Skip to content

Supported Providers

Rawi CLI supports 11 major AI providers, giving you access to dozens of models from leading companies. Whether you need cloud-based power or local privacy, there’s a provider configuration for your use case.

Commercial cloud providers with API keys:

  • OpenAI - GPT-4o, GPT-4, O1 models
  • Anthropic - Claude 3.5 Sonnet, Claude 4
  • Google - Gemini 2.0 Flash, Gemini 1.5 Pro
  • DeepSeek - Cost-effective reasoning models
  • Mistral - European AI with multilingual support
  • Cerebras - Ultra-fast inference with WSE technology
  • Azure OpenAI - Enterprise OpenAI models
  • Amazon Bedrock - Multi-vendor model access
  • xAI - Grok models from Elon Musk’s company
ProviderBest ForKey ModelsSetup Difficulty
OpenAIGeneral AI tasks, codingGPT-4o, O1Easy
AnthropicLong contexts, analysisClaude 3.5 SonnetEasy
GoogleMultimodal tasksGemini 2.0 FlashEasy
DeepSeekCost-effective reasoningDeepSeek ChatEasy
MistralEuropean AI, multilingualMistral LargeEasy
CerebrasUltra-fast inferenceLlama 3.1 70BEasy
OllamaPrivacy, local useLlama 3.2, MistralMedium
LM StudioLocal model managementOllama modelsEasy
AzureEnterprise environmentsGPT-4 (Enterprise)Medium
BedrockAWS ecosystemClaude, Llama, TitanHard
xAIExperimental featuresGrok-2Easy

The most popular provider with cutting-edge models including the latest GPT-4o and reasoning models.

Available Models:

  • gpt-4o - Latest multimodal model (recommended)
  • gpt-4o-mini - Faster, cost-effective version
  • gpt-4 - Previous generation flagship
  • gpt-3.5-turbo - Fast and affordable
  • o1-preview - Advanced reasoning model
  • o1-mini - Compact reasoning model

Configuration:

Terminal window
# Basic setup
rawi configure --provider openai --model gpt-4o --api-key sk-your-key
# With custom settings
rawi configure --provider openai \
--model gpt-4o \
--api-key sk-your-key \
--temperature 0.7 \
--max-tokens 2048

Use Cases:

  • General purpose AI tasks
  • Code generation and review
  • Writing and content creation
  • Data analysis and reasoning

Anthropic’s Claude models excel at long-form analysis, safety, and nuanced reasoning.

Available Models:

  • claude-3-5-sonnet-20241022 - Latest and most capable (recommended)
  • claude-3-5-haiku-20241022 - Fast and cost-effective
  • claude-3-opus-20240229 - Previous flagship model

Configuration:

Terminal window
# Basic setup
rawi configure --provider anthropic \
--model claude-3-5-sonnet-20241022 \
--api-key sk-ant-your-key
# For long-form analysis
rawi configure --provider anthropic \
--model claude-3-5-sonnet-20241022 \
--api-key sk-ant-your-key \
--max-tokens 4000 \
--temperature 0.1

Use Cases:

  • Long document analysis
  • Code review and refactoring
  • Research and writing
  • Safety-critical applications

Google’s Gemini models provide strong multimodal capabilities and competitive performance.

Available Models:

  • gemini-2.0-flash-exp - Latest experimental model
  • gemini-1.5-pro - High-capability model
  • gemini-1.5-flash - Fast and efficient

Configuration:

Terminal window
# Basic setup
rawi configure --provider google \
--model gemini-2.0-flash-exp \
--api-key your-google-api-key
# For multimodal tasks
rawi configure --provider google \
--model gemini-1.5-pro \
--api-key your-google-api-key \
--temperature 0.4

Use Cases:

  • Multimodal tasks (text + images)
  • Search and information retrieval
  • Creative writing
  • Technical documentation

Cost-effective AI with strong reasoning capabilities and competitive performance.

Available Models:

  • deepseek-chat - Versatile model for general use
  • deepseek-reasoner - Enhanced reasoning capabilities

Configuration:

Terminal window
# Basic setup
rawi configure --provider deepseek \
--model deepseek-chat \
--api-key sk-your-deepseek-key
# For reasoning tasks
rawi configure --provider deepseek \
--model deepseek-reasoner \
--api-key sk-your-deepseek-key \
--temperature 0.2

Use Cases:

  • Cost-effective AI interactions
  • Complex reasoning tasks
  • Mathematical problem solving
  • Budget-conscious applications

European AI platform with strong multilingual capabilities and GDPR compliance.

Available Models:

  • mistral-large-latest - Most capable model
  • mistral-small-latest - Efficient and fast
  • ministral-3b-latest - Lightweight model
  • ministral-8b-latest - Balanced performance
  • pixtral-large-latest - Multimodal capabilities

Configuration:

Terminal window
# Basic setup
rawi configure --provider mistral \
--model mistral-large-latest \
--api-key your-mistral-key
# For multilingual tasks
rawi configure --provider mistral \
--model mistral-large-latest \
--api-key your-mistral-key \
--temperature 0.5

Use Cases:

  • European AI with GDPR compliance
  • Multilingual applications
  • JSON mode support
  • Function calling capabilities

Ultra-fast AI inference with Wafer-Scale Engine technology for exceptional speed.

Available Models:

  • llama3.1-70b - Meta’s Llama 3.1 70B model
  • llama3.1-8b - Meta’s Llama 3.1 8B model
  • llama-3.3-70b - Latest Meta Llama 3.3 70B

Configuration:

Terminal window
# Basic setup
rawi configure --provider cerebras \
--model llama3.1-70b \
--api-key csk-your-key
# For speed-critical tasks
rawi configure --provider cerebras \
--model llama3.1-70b \
--api-key csk-your-key \
--temperature 0.7

Use Cases:

  • Ultra-fast inference requirements
  • High-throughput applications
  • Speed-critical workflows
  • Real-time AI interactions

Run open-source models locally for privacy and control. No API key required.

Popular Models:

  • llama3.2:latest - Meta’s latest Llama model
  • mistral:latest - Mistral AI’s flagship model
  • codellama:latest - Specialized for code generation
  • phi3:latest - Microsoft’s compact model

Configuration:

Terminal window
# Install Ollama first: https://ollama.ai
curl -fsSL https://ollama.ai/install.sh | sh
# Start Ollama service
ollama serve
# Pull a model
ollama pull llama3.2
# Configure Rawi
rawi configure --provider ollama \
--model llama3.2 \
--base-url http://localhost:11434

Use Cases:

  • Privacy-sensitive tasks
  • Offline work environments
  • Cost-free AI interactions
  • Experimentation with open models

User-friendly local AI with GUI management for easy model handling and optimization.

Key Features:

  • 🖥️ Easy GUI for model management
  • 📦 Automatic model downloads
  • ⚙️ Hardware optimization
  • 🔧 Fine-tuning capabilities
  • 📊 Performance monitoring

Popular Models:

  • Llama models (3.1, 3.2)
  • Mistral models
  • Code-specific models
  • Custom fine-tuned models

Configuration:

Terminal window
# Install LM Studio first: https://lmstudio.ai
# Download and install from website
# Download models through GUI
# Start local server in LM Studio
# Configure Rawi
rawi configure --provider lmstudio \
--model your-loaded-model \
--base-url http://localhost:1234

Setup Steps:

  1. Download LM Studio from lmstudio.ai
  2. Install and open the application
  3. Browse and download models through the GUI
  4. Start the local server
  5. Configure Rawi to use LM Studio

Use Cases:

  • User-friendly local AI without command line
  • GUI-based model management
  • Hardware-optimized inference
  • Fine-tuning and customization
  • Educational and research purposes

Enterprise-grade OpenAI models with enhanced security and compliance.

Available Models:

  • Same as OpenAI but with enterprise features
  • Custom fine-tuned models
  • Regional deployment options

Configuration:

Terminal window
# Basic setup
rawi configure --provider azure \
--model gpt-4 \
--api-key your-azure-key \
--resource-name your-resource-name \
--base-url https://your-resource.openai.azure.com
# With API version
rawi configure --provider azure \
--model gpt-4 \
--api-key your-azure-key \
--resource-name your-resource-name \
--api-version 2024-10-01-preview

Use Cases:

  • Enterprise environments
  • Compliance-critical applications
  • Custom model deployments
  • Regional data requirements

Access multiple AI providers through AWS’s managed service.

Available Models:

  • anthropic.claude-3-5-sonnet-20241022-v2:0 - Claude 3.5 Sonnet
  • anthropic.claude-3-haiku-20240307-v1:0 - Claude 3 Haiku
  • meta.llama3-2-90b-instruct-v1:0 - Llama 3.2 90B
  • amazon.titan-text-premier-v1:0 - Amazon Titan

Configuration:

Terminal window
# Using AWS credentials
export AWS_ACCESS_KEY_ID="your-access-key"
export AWS_SECRET_ACCESS_KEY="your-secret-key"
export AWS_REGION="us-east-1"
rawi configure --provider bedrock \
--model anthropic.claude-3-5-sonnet-20241022-v2:0 \
--region us-east-1

Use Cases:

  • AWS-integrated workflows
  • Multi-model experimentation
  • Enterprise AWS environments
  • Regulated industries

Elon Musk’s xAI models with unique training and capabilities.

Available Models:

  • grok-2-1212 - Latest Grok model
  • grok-2-vision-1212 - Multimodal version
  • grok-beta - Beta testing model

Configuration:

Terminal window
rawi configure --provider xai \
--model grok-2-1212 \
--api-key xai-your-api-key

Use Cases:

  • Creative and experimental tasks
  • Alternative perspective generation
  • Research and exploration
  • Unique reasoning approaches

Recommended: OpenAI GPT-4o or Anthropic Claude 3.5 Sonnet

Terminal window
# OpenAI for general coding
rawi configure --provider openai --model gpt-4o
# Claude for code review
rawi configure --provider anthropic --model claude-3-5-sonnet-20241022

Recommended: Anthropic Claude 3.5 Sonnet for analysis, OpenAI GPT-4o for creativity

Terminal window
# Long-form analysis
rawi configure --profile research \
--provider anthropic \
--model claude-3-5-sonnet-20241022 \
--max-tokens 4000
# Creative writing
rawi configure --profile creative \
--provider openai \
--model gpt-4o \
--temperature 0.8

Recommended: Azure OpenAI or Amazon Bedrock

Terminal window
# Azure for Office 365 integration
rawi configure --provider azure \
--model gpt-4 \
--resource-name company-openai
# Bedrock for AWS environments
rawi configure --provider bedrock \
--model anthropic.claude-3-5-sonnet-20241022-v2:0

You can use different providers for different tasks within the same project:

Terminal window
# Code generation with OpenAI
rawi configure --profile code \
--provider openai \
--model gpt-4o
# Code review with Claude
rawi configure --profile review \
--provider anthropic \
--model claude-3-5-sonnet-20241022
# Documentation with Gemini
rawi configure --profile docs \
--provider google \
--model gemini-1.5-pro
# Privacy-sensitive tasks with Ollama
rawi configure --profile private \
--provider ollama \
--model llama3.2
  1. Choose your provider(s) based on your needs

  2. Get API keys:

  3. Set up enterprise providers:

    • Azure: Contact your Azure administrator
    • Bedrock: Set up through AWS Console
  4. Install local providers:

  • Use gpt-4o for best overall performance
  • Set lower temperature (0.1-0.3) for factual tasks
  • Use o1-preview for complex reasoning problems
  • Claude excels at long document analysis
  • Use higher token limits (3000-4000) for detailed work
  • Great for safety-critical applications
  • Gemini 2.0 Flash is experimental but very capable
  • Strong multimodal capabilities
  • Good for search and information tasks
  • Start with llama3.2:8b for general use
  • Use codellama specifically for programming
  • Models run entirely on your machine
  • Use the GUI for easy model management
  • Great for users who prefer visual interfaces
  • Automatic hardware optimization
  • Easy model switching through interface
  • Check regional availability for models
  • Consider compliance requirements
  • May have different pricing structures

API Key Errors:

Terminal window
# Test your configuration
rawi configure --test
# Verify API key format
rawi configure --show

Connection Problems:

Terminal window
# Check provider status
rawi info --providers
# Test with simple query
rawi ask "hello" --verbose

Model Not Available:

Terminal window
# List available models for provider
rawi info --models --provider openai
# Try different model
rawi configure --model gpt-3.5-turbo

Ollama not responding:

Terminal window
# Check if Ollama is running
curl http://localhost:11434/api/tags
# Start Ollama service
ollama serve
# Pull model if missing
ollama pull llama3.2

LM Studio connection issues:

Terminal window
# Check if LM Studio server is running
curl http://localhost:1234/v1/models
# Start server in LM Studio app
# Check Models tab for loaded models
# Verify server is running on correct port
# Test connection
rawi configure --provider lmstudio --test

Azure authentication:

Terminal window
# Verify resource name and endpoint
rawi configure --provider azure --show
# Check Azure subscription
az account show